Project: Forecasting Sales

Step 1: Plan Your Analysis

Look at your data set and determine whether the data is appropriate to use time series models.
Determine which records should be held for validation later on (250 word limit).

Answer the following questions to help you plan out your analysis:
1. Does the dataset meet the criteria of a time series dataset? Make sure to explore all four
key characteristics of a time series data.

Initial findings of the time series showed a complete series exhibiting the 4 key characteristics of
time series data. The series is over a continuous time interval, of sequential measurements
across that interval, using equal spacing between every two consecutive measurements and
each time unit within the time interval has at most one data point.

The data collected is composed of monthly sales data dating back to 2008 and going until
September 2013. A sample image of the data is shown below:

Maonth Manthly Sales
2008-01 154000
2008-02 56000
2008-03 | 73000
2008-04 571000
2008-05 | 53000
2008-06 | 53000

g-07 | 95000

08 | 165000
8-0% | 210000
10 | 2008-10 | 272000
11 | 2008-11 | 307000
12 | 2008-12 | 245000
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2. Which records should be used as the holdout sample?

In preparation for construction of a predictive models, | have filtered out the last 4 records,
2013-06 to 2013-09, as a holdout sample so that | can check the accuracy of my model to
forecast predicted values against the actual values.

Step 2: Determine Trend, Seasonal, and Error components



Graph the data set and decompose the time series into its three main components: trend,
seasonality, and error. (250 word limit)

Answer this question:

1. What are the trend, seasonality, and error of the time series? Show how you were able
to determine the components using time series plots. Include the graphs.

The initial findings of the time series plot shows an upward rising trend with a regularly occurring
spike in sales each year reported at the end of the year. This pattern shows that we have
seasonality in our time series. There are no patterns within the series suggesting cyclicity.

Time Series Plot
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The decomposition plot shows our time series broken down into its three components: trend,
seasonal and the error. Each of these components makes up our time series and helps us
confirm what we saw in our initial time series plot.
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Our trend line is confirmed as upward trending.

The seasonal portion shows that the regularly occurring spike in sales each year changes in
magnitude, ever so slightly. Having seasonality suggests that any ARIMA models used for
analysis will need seasonal differencing. The change in magnitude suggests that any ETS
models will use a multiplicative method in the seasonal component.



The error plot of the series presents a fluctuations between large and smaller errors as the time
series goes on. Since the fluctuations are not consistent in magnitude then we will apply error in
a multiplicative manner for any ETS models.

Step 3: Build your Models

Analyze your graphs and determine the appropriate measurements to apply to your ARIMA and
ETS models and describe the errors for both models. (500 word limit)

Answer these questions:

1. What are the model terms for ETS? Explain why you chose those terms.
a. Describe the in-sample errors. Use at least RMSE and MASE when examining
results

From our decomposition plot we can obtain the necessary information to define our terms for
the ETS model.

Our trend line exhibits linear behavior so we will use an additive method.
The seasonality changes in magnitude each year so a multiplicative method is necessary.

The error changes in magnitude as the series goes along so a multiplicative method will be
used.

This leaves us with an ETS(M, A, M) model.

Error Terms:
The in-sample error measures give us a look at how well our model is able to predict future
values.

THESE NUMBER HAVE CHANGED WITH NEWER VERSIONS OF ALTERYX, IF YOU HAVE

SELECTED THE CORRECT MODEL TERMS DO NOT WORRY IF THEY DO NOT MATCH UP
EXCATLY

In—SampEe error measures:

ME RMSE MAE MPE MAPE MASE ACF1
3729.2947922 32883.8331471 24917.2814212 -0.9481496 10.2264109 0.3635056 0.1436491




Two key components to look at are the RMSE, which shows the in-sample standard deviation,
and the MASE which can be used to compare forecasts of different models. We can see that
our variance is about 33000 units around the mean.

The MASE shows a fairly strong forecast at .36 with its value falling well below the generic 1.00,
the commonly accepted MASE threshold for model accuracy.

2. What are the model terms for ARIMA? Explain why you chose those terms. Graph the
Auto-Correlation Function (ACF) and Partial Autocorrelation Function Plots (PACF) for
the time series and seasonal component and use these graphs to justify choosing your

model terms.
a. Describe the in-sample errors. Use at least RMSE and MASE when examining
results

b. Regraph ACF and PACF for both the Time Series and Seasonal Difference and
include these graphs in your answer and show that the graphs have no
autocorrelated lag anymore.

Since there are seasonal components found in the time series | will use an ARIMA(p, d, q)(P, D,
Q)S model for forecasting.

Time Series ACF and PACF:
The ACF presents slowly decaying serial correlations towards 0 with increases at the seasonal
lags. Since serial correlation is high | will need to seasonally difference the series.
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Seasonal Difference ACF and PACF:

The seasonal difference presents similar ACF and PACF results as the initial plots without
differencing, only slightly less correlated. In order to remove correlation we will need to
difference further.
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Seasonal First Difference:

The seasonal first difference of the series has removed most of the significant lags from the
ACF and PACF so there is no need for further differencing. The remaining correlation can be
accounted for using autoregressive and moving average terms and the differencing terms will
be d(1) and D(1).

The ACF plot shows a strong negative correlation at lag 1 which is confirmed in the PACF. This
suggests an MA(1) model since there is only 1 significant lag. The seasonal lags (lag 12, 24,
etc.) in the ACF and PACF do not have any significant correlation so there will be no need for
seasonal autoregressive or moving average terms.

Autocorrelation Function Plot ﬂ Partial Autocorrelation Function Plot o
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Therefore the model terms for my ARIMA model are:
ARIMA(0, 1, 1)(0, 1, 0)[12]
Error Terms:

The ACF and PACF results for the ARIMA(O, 1, 1)(0, 1, 0)[12] model shows no significantly
correlated lags suggesting no need for adding additional AR() or MA() terms.



Autocorrelation Function Plot €@

ACF
e ao | I | I - | - I I ; | I I I
Lag
PACF
']||]||'|||I'I|'|IIII
Lag
The in-sample error provides a closer look at the model accuracy.
In-sample error measures:
ME RMSE MAE MPE MAPE MASE ACF1

-356.2665104 36761.5281724 24993.041976 -1.8021372 9.824411 0.3646109 0.0164145

Two key components to look at are the RMSE, which shows the in-sample standard deviation,
and the MASE which can be used to compare forecasts of different models. We can see that
our variance is about 37000 units around the mean.

The MASE shows a fairly strong forecast at .36 with its value falling well below the generic 1.00,
the commonly accepted MASE threshold for model accuracy.

Step 4: Forecast

Compare the in-sample error measurements to both models and compare error measurements
for the holdout sample in your forecast. Choose the best fitting model and forecast the next four
periods. (250 words limit)



Answer these questions.

1. Which model did you choose? Justify your answer by showing: in-sample error
measurements and forecast error measurements against the holdout sample.

When fitting a forecasting model we can use a series of identifiers that help us choose the best
model.

When comparing the two in-sample error measures we used, the RMSE and MASE, we see
very similar results. The ETS model does have a narrower standard deviation but only by a few
thousand units.

ETS

In—sampie error measures:

ME RMSE MAE MPE MAPE MASE ACF1
3729.2947922 32883.8331471 24917.2814212 -0.9481496 10.2264109 0.3635056 0.1436491

ARIMA

In-sam p[e error measures:

ME RMSE MAE MPE MAPE MASE ACF1
-356.2665104 36761.5281724 24993.041976 -1.8021372 9.824411 0.3646109 0.0164145

Further investigation shows that the MAPE and ME of the ARIMA model are lower than the
ETS. This suggests that, on average, the ARIMA model misses its forecast by a lesser amount.

When looking at the model’s ability to predict the holdout sample, we see that the ARIMA model
has better predictive qualities in just about every metric.

Accuracy Measures:

Model ME RMSE MAE MPE MAPE MASE
ETS -73257.47 89012.35 74392.72 -17.1046 17.5235 1.2363
ARIMA 22271.52 33589.74 25885.76  4.628 5.7976 0.4302

For our forecast, we will use the ARIMA model.



2. What is the forecast for the next four periods? Graph the results using 95% and 80%
confidence intervals.

Forecast results using 95% and 80% confidence intervals:

Period

b B =0 B = L B =3

Sub_Period
10
11
12
i

forecast
754854460048
785854460048
684854460048
687854460048

forecast_high_95

833335.856133
878538.837645
789837.592834
803839469806

|
|
|
|

forecast_high_80

806170.686679
846457.517118
753459.24089

763692.981576

forecast_low_80

703538.233418
725251402978
616209.675206
612015.938521

k|
-
k.
b

forecast_low_35

676373.063963
693170.082452
579871.327263
571869450291
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From NEWER VERSION (see table below) of ALTERYX numbers are slightly different, both are

acceptable.
Period Sub_Period
2013 10
2013 11
2013 12
2014 1

forecast
754854,460048
785854.460048
684854.460048
687854.460048

forecast_high_95

834046.21595
879377.753117
790787.828211
804889.286634

forecast_high_80
806635.165997
847006.054462
754120.566407
764379.419903

forecast_low_80
703073.754099
724702,865635
615588.35369
611329,500193

forecast_low_95

675662.704146
692331.166979
578921.091886
570819.633462

Shown graphically here:

Before you Submit

Please check your answers against the requirements of the project dictated by the rubric here.

Reviewers will use this rubric to grade your project.



https://review.udacity.com/#!/rubrics/xxxxx/view

